Introducing a Transceiver that Can Tap into the Higher Frequency Bands of 5G Net… – Press Release

TOKYO, June 15, 2022 – (JCN Newswire) – A novel phased-array beamformer for the 5G millimeter wave (mmWave) band has been recently developed by researchers at Tokyo Tech and NEC Corporation. Their innovative design applies two well-known techniques — the Doherty amplifier and digital predistortion — to a mmWave phased-array transceiver and overcomes the issues in conventional designs, producing exceptional energy and area efficiency and outperforming other state-of-the-art 5G transceivers.

5G networks are becoming more prevalent worldwide. Many consumer devices that support 5G are already benefiting from increased speeds and lower latency. However, some frequency bands allocated for 5G are not effectively utilized owing to technological limitations. These frequency bands include the New Radio (NR) 39 GHz band, but actually span from 37 GHz to 43.5 GHz, depending on the country. The NR band offers notable advantages in performance over other lower frequency bands 5G networks use today. For instance, it enables ultra-low latency in communication along with data rates of over 10 Gb/s and a massive capacity to accommodate several users.

However, these feats come at a cost. High-frequency signals are attenuated quickly as they travel through space. It is, therefore, crucial that the transmitted power is concentrated in a narrow beam aimed directly at the receiver. This can, in principle, be achieved using phased-array beamformers, transmission devices composed of an array of carefully phase-controlled antennas. However, working at high frequency regions of the NR band decreases the efficiency of power amplifiers as they tend to suffer from nonlinearity issues, which distort the transmitted signal.

To address these issues, a team of researchers led by Professor Kenichi Okada from Tokyo Institute of Technology (Tokyo Tech), Japan, have recently developed, in a new study, a novel phased-array beamformer for 5G base stations. Their design adapts two well-known…